A non-linear Granger-causality framework to investigate climate–vegetation dynamics
نویسندگان
چکیده
منابع مشابه
Spatio-temporal Granger causality: A new framework
That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framewo...
متن کاملData Driven Methods for Granger Causality and Contemporaneous Causality with Non-Linear Corrections: Climate Teleconnection Mechanisms
We describe a unification of old and recent ideas for formulating graphical models to explain time series data, including Granger causality, semi-automated search procedures for graphical causal models, modeling of contemporaneous influences in times series, and heuristic generalized additive model corrections to linear models. We illustrate the procedures by finding a structure of exogenous va...
متن کاملGranger causality
Granger causality is a statistical concept of causality that is based on prediction. According to Granger causality, if a signal X1 "Granger-causes" (or "G-causes") a signal X2, then past values of X1 should contain information that helps predict X2 above and beyond the information contained in past values of X2 alone. Its mathematical formulation is based on linear regression modeling of stoch...
متن کاملFrom Correlation to Granger Causality
The paper focuses on establishing causation in regression analysis in observational settings. Simple static regression analysis cannot establish causality in the absence of a priori theory on possible causal mechanisms or controlled and randomized experiments. However, two regression based econometric techniques – instrumental variables and Granger causality can be used to test for causality gi...
متن کاملGranger causality revisited
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geoscientific Model Development
سال: 2017
ISSN: 1991-9603
DOI: 10.5194/gmd-10-1945-2017